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Pittsburgh
Supercomputing Center
enabling discovery since 1986

The Pittsburgh Supercomputing Center (PSC) provides advanced
research computing capability, education, and expertise to the national
research community.

Since 1986, PSC has provided university, government, and industry 
researchers with access to some of the most powerful systems available 
for high-performance computing, enabling discovery across all fields of 
science.

OUR AREAS OF EXPERTISE

• high-performance and data-intensive computing
• data management technologies
• software architecture, implementation, and optimization
• enabling ground-breaking science, computer science, and engineering
• user support for all phases of research and education
• STEM outreach in data science, bioinformatics, and coding
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Bridges-2 Webinars

• A forum for the Bridges-2 community to learn and share 

ideas and achievements: Bridges-2 Webinar series | PSC

• Topics and speakers of interest to work that is being 

done, or that may be done in future. 

• Please suggest future speakers (including from your own 

team) and/or topics (including your own)! 

Just email: sergiu@psc.edu

https://www.psc.edu/events/bridges-2-webinar-series/
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Introducing today’s presenter: Olexandr Isayev

Olexandr is a full-time professor in the Department of Chemistry at 

Carnegie Mellon University. In 2008, Olexandr received his Ph.D. in 

computational chemistry. He was a Postdoctoral Research Fellow 

at Case Western Reserve University and a scientist at the 

government research lab. Before CMU, he was a faculty member at 

UNC Eshelman School of Pharmacy, the University of North 

Carolina at Chapel Hill. Olexandr is a 2023 Scialog Fellow and 

Associate Editor for the ACS Journal of Chemical Information and 

Modeling. The research in his lab focuses on connecting artificial 

intelligence (AI) with chemical sciences.
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Q&A Logistics 

• We abide by https://support.access-ci.org/code-of-conduct

• All of us except Olexandr will be muted during his presentation.

• Please type your questions into the Zoom chat. 

• We may be able to address some questions in the chat while 

Olexandr is presenting.

• When Olexandr finishes his  presentation, he will answer 

questions live during the final ~10 minutes of this webinar.



Olexandr Isayev
Department of Chemistry, Carnegie Mellon University

olexandr@olexandrisayev.com
                                                   http://olexandrisayev.com

@olexandr 

AIMNet2: Foundation neural network 
potentials for molecules and reactions

#StandWithUkraine

2024 PSC Bridges-2 webinar
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Can you imagine a 
Chemist?





Can a computer learn chemistry ?



What’s it Good For?

Computational chemistry is a rapidly growing field in 
chemistry.

• Computers are getting faster.
• Algorithms and programs are maturing.

Some of the almost limitless properties that can be calculated 
with computational chemistry are:

• Design of novel molecules and materials
• Medicinal chemistry, drug discovery
• Vibrational frequencies, IR and Raman Spectra
• NMR spectra
• Electronic excitations and UV spectra
• Reaction rates and catalyst design
• Thermochemical and high accuracy reference data



Time Independent Schrödinger Equation
We’ll be solving the Time-Independent Schrödinger Equation
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Motivation

Schrödinger Equation can only be solved exactly for 
simple systems.

• Rigid Rotor, Harmonic Oscillator, Particle in a Box, Hydrogen 
Atom

For more complex systems (i.e. many electron 
atoms/molecules) we need to make some simplifying 
assumptions/approximations and solve it numerically.

However, it is still possible to get very accurate results 
(and also get very crummy results).

• In general, the “cost” of the calculation increases with the 
accuracy of the calculation and the size of the system.



The Born-Oppenheimer Approximation

• The wave-function of the many-electron molecule is a 
function of electron and nuclear coordinates: (R,r) 
(R=nuclear coords, r=electron coords).

• The motions of the electrons and nuclei are coupled.
• However, the nuclei are much heavier than the electrons

• mp ≈ 2000 me

• And consequently, nuclei move much more slowly than 
do the electrons (E=1/2mv2).  To the electrons the nuclei 
appear fixed.

• Born-Oppenheimer Approximation:  to a high degree of 
accuracy we can separate electron and nuclear motion:

 (R,r)= el(r;R) N(R)



Electronic 
wave 
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The Electronic Schrödinger Equation (QM)
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Molecular mechanics/Classical force field



y = f(x)

• Training: given a training set of labeled examples {(x1,y1), …, 
(xN,yN)}, estimate the prediction function f by minimizing the 
prediction error on the training set

• Testing: apply f to a never before seen test example x and output 
the predicted value y = f(x)

output prediction 

function

Molecular 

features

Supervised Machine Learning Framework



Machine Learned Interatomic Potential (MLIP) Motivation

Slide 13

(Spoiler alert!)

E=f(Rvector)

Standard Geometry Optimization 
(i.e., minimizing the atomic forces) 

Neural Network Interatomic Potential

Forward Pass Potential Energy

Atomic Forces Backward Pass



Structure representation
naphtalen-1-amine

Viewed by

another molecule
Viewed by chemists

Viewed by

computers





Molecular graphs allow

the computation of 

numerous features to 

compare them

quantitatively.

Graphs are widely used to represent

and differentiate chemical structures,

where atoms are vertices and bonds

are expressed as edges connecting these 

vertices.

MOL File

Vertices

Edges

Downstream ML tasks

Structure representation



Graph/point cloud-based models for molecules



ANI Architecture

Local Atomic Environment: 
Justin Smith Symmetry Functions

e.g., use element-dependent 
invariant symmetry functions

Justin Smith, O.I, and Adrian Roitberg. Chem. Sci. 8(4), 3192-3203, 2017.

The Force is Strong with This One!



Molecular Representation: JSSFs 

R = 5 A

R = 5 A

R = 5 A

R = 5 A

R = 5 A

R = 5 A
R = 5 A

J. Smith, O. Isayev, A. Roitberg. Chem. Sci., 2017, 8, 3192-3203



Current Features of ANI software
• Currently available elements: CHNOSFCl

• More advanced model architectures with 14 elements 

• Two levels of theory: 
• B97M/Def2-TZVPP and 

• CCSD(T)*/CBS 

• Geo opt, analytic hessian, MD: NVE, NVT, NPT etc

• Thermochemistry in harmonic and quasi-harmonic approximations

• Accurate conformational search in gas and continuum dielectric

• Full implementation of PBC, domain decomposition on multiple GPUs

• Stress tensor and cell optimization
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https://github.com/aiqm/torchani



Geometry & Potential Energy 

Surface

Reaction Thermochemistry

Smith, J.S., Nebgen, B.T., Zubatyuk, R. et al. Approaching 
coupled cluster accuracy with a general-purpose neural 
network potential through transfer learning. Nat Commun 
10, 2903 (2019). https://doi.org/10.1038/s41467-019-
10827-4

Christian Devereux, Justin S. Smith, Kate K. Davis, Kipton Barros, 
Roman Zubatyuk, Olexandr Isayev, and Adrian E. Roitberg. Extending 
the Applicability of the ANI Deep Learning Molecular Potential to 
Sulfur and Halogens. Journal of Chemical Theory and Computation 
2020 16 (7), 4192-4202 DOI: 10.1021/acs.jctc.0c00121

Fast but Accurate Property Predictions with ML
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Auto3D Package
Input: SMILES

Output: Optimized conformers 
and energies

Isomer engine: RDKit/OMEGA

Optimizing engine: ANI-
2x/AIMNET/ANI-2xt

Key features:

•Accurate NNPs
•Highly parallel on GPUs
•Run as a Python 
  library, CLI, yaml

Liu, Z.; Zubatiuk, T.; Roitberg, A.; Isayev, O.  J. Chem. Info. Model. 2022, 62(22), 5373
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An example from scratch: Gibbs free energy 
of tautomerization reactions

➢ 81 SMILES pairs
➢ Obtain 3D structure with 

Auto3D
➢ Calculate Gibbs free 

energies with ANI-2xt and 
B973c, respectively.

∆𝐺𝑡𝑎𝑢𝑡
𝑔𝑎𝑠

= ∆𝐸𝑡𝑎𝑢𝑡
𝑒𝑙 + ∆𝐸 𝑍𝑃𝐸 + ∆𝐸𝑡 − 𝑇∆𝑆

R2: 0.95
MAE: 1.48 kcal/mol

Liu, Z.; Zubatiuk, T.; Roitberg, A.; Isayev, O.  J. Chem. Info. Model. 2022, 62(22), 5373
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Current user base

➢ Academic labs
➢ Big pharmaceutical 

companies
➢ Chemical Industry
➢ Drug discovery startups

➢ Installation: pip install Auto3D
➢ https://github.com/isayevlab/Auto3D_pkg

https://github.com/isayevlab/Auto3D_pkg


A general MLIP for aluminum under extreme conditions
Los Alamos national lab: materials simulations at scale with ANI

• Constructed on the DOE LLNL Sierra supercomputer using 
V100 GPUs during its open science period

• Active learning automatically samples all phases of interest

• Human knowledge is not required, and may even be inferior 
to fully automated data selection

• Enabled large scale shock simulations of 1.3 million atoms on 
80 NVIDIA GPUs

• Shock simulation can be compared back to EXFAS 
experimental data for validation

JS Smith, B Nebgen, N Mathew, J Chen, N Lubbers, L Burakovsky, S  Tretiak, HA 
Nam, T Germann, S Fensin, K Barros; Nature Communications (12) 1257 (2021) Slide courtesy of Justin Smith

https://www.nature.com/articles/s41467-021-21376-0


ANI-1xnr: Reactive ML Potential for CHNO Chemistry

The ANI-1xnr model can be found at:
https://github.com/atomistic-ml/ani-1xnr/

https://github.com/atomistic-ml/ani-1xnr/


A most recent progress of ANI potential (ANI-1xNR) built by 
active learning workflow & nanoreactor MD

Zhang, Shuhao, et al. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).



Case Study 1: Carbon solid-phase nucleation

• Initial simulation set-up:

5000 carbon atoms

0.5-3.5 gm/cm3

2500 K

Zhang, Shuhao, et al. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).

Carbon will form different solid-phase 

products under different conditions

Test the model’s performance on carbon 

solid-phase nucleation process to see if 

the physics the model learned can also 

work on physical process not shown in 

the training set



Case Study 1: Carbon solid-phase nucleation

• ANI-1nr produces the expected bulk 

structures at each density

• ANI-1nr predicts reliable lattice 

constants for diamond and graphite

Zhang, Shuhao, et al. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).



Case Study 3: Methane Combustion

Fragments track during the simulation

Methane combustion (100 methane + 200 O2) 
with ANI-RXN reactive potential 

Species profiles consistent with 
literature bespoke ML potential



2017: ANI





Different NN Architectures 

Tetiana Zubatiuk and Olexandr Isayev. Accounts of Chemical Research 2021 54 (7), 1575-1585 DOI: 10.1021/acs.accounts.0c00868



The 2nd Generation Atoms-in-Molecules ML Potential

AIMNet2 is generalized potential with chemical space coverage of 

common non-metal and halogen elements with ~hybrid DFT accuracy

Pre-trained Models and Calculators Available: https://github.com/isayevlab/aimnet2 

Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch

https://github.com/isayevlab/aimnet2


Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch

2024: AIMNet2



Parametric t-SNE projection of Atomic Feature Vectors

Differentiation by atomic charge

Differentiation by chemical environment



NSE: Neutral Spin and Charge Equilibration

AIMNet-NSE achieves energy 
accuracy of ~2 kcal mol-1 for neutral, 
anionic, and cationic molecules.

The development of neutral spin equilibration improves AIMNet to 
cover neutral and charged molecules.

AIMNet-NSE

DFT

During message passing, charge 
normalization factors are predicted to 
redistribute charge across the system.

Zubatyuk et al. Nat. Comm. 12, 4870, 2021.



Conceptual DFT: reactivity indices

Chemical potential       𝜇 =
𝜕𝐸

𝜕𝑁 𝑉
≈ −

1

2
𝐼𝑃 + 𝐸𝐴

Molecular hardness     𝜂 =
1

2

𝜕2𝐸

𝜕𝑁2
𝑉

≈
1

2
𝐼𝑃 − 𝐸𝐴

Electrophilicity index   𝜔 =  ൗ𝜇2

2𝜂

Fukui index                 𝑓 𝑟 =
𝜕𝜌 𝑟

𝜕𝑁 𝑉

 𝑓𝑎
− = 𝑞𝐶 − 𝑞𝑁 ;     𝑓𝑎

+ = 𝑞𝑁 − 𝑞𝐴 ; 𝑓𝑎
0 =

1

2
(𝑞𝐶 +𝑞𝐴)

Atomic philicity indexes         𝜔𝑎
𝑘 = 𝜔𝑓𝑎

𝑘

Zubatyuk, Roman; Smith, Justin; Nebgen, Benjamin T.; Tretiak, Sergei; Isayev, Olexandr. Teaching a Neural Network to Attach and Detach Electrons from 

Molecules. Nature Communications, 2021, 12,  4870.  Preprint: https://doi.org/10.26434/chemrxiv.12725276.v2

DFT and AIMNet-NSE predictions for electronegativity (𝜒), 

chemical hardness (𝜂) and electrophilicity index (𝜔)



AIMNet2 computational performance

Batch optimization of conformer 
ensembles

AIMNet2 CPU

GFN-FF

AIMNet2 GPU

GFN2-xTB

Benchmarks performed on a single core of i7-9700K CPU and Nvidia Titan V GPU.
Reported total optimization time per molecule.

AIMNet2 model was used with PyTorch based implementation of FIRE optimizer, 
which takes 1.5-2x more steps to converge compared to ANC optimizer in XTB.

Protein energy & gradient evaluation

Benchmarks performed on a Nvidia H100 (80GB VRAM)
LBFGS optimizer in ASE has overhead of 4-5% beyond forces evaluation with AIMNet2.

Medium-size molecule with 
~100 conformers could be 
optimized for 2-3s on GPU

Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch



AIMNet2 Foundation Model: Enabling Diverse Application

Machine Learning / Molecular Mechanics 

Simulations

AIMNet2-COSMO-SAC/ RS

Pd Catalyzed Reactions Generative Modeling



Refinement of protein crystal structure with ML
Optimization process of fitting structural parameters to experimental data Priori knowledge

QM computations

https://github.com/qrefine/

R. Zubatyuk, et al. AQuaRef: Machine learning accelerated quantum refinement of protein structures. 

BioRxiv 2024.07.21.604493; DOI: https://doi.org/10.1101/2024.07.21.604493

Fit atomic model to experimental data as 
good as possible while making sure the 
model makes physical and chemical sense 



Default Phenix Refinement vs AQuaRef

R. Zubatyuk, et al. AQuaRef: Machine learning accelerated quantum refinement of protein structures. 

BioRxiv 2024.07.21.604493; DOI: https://doi.org/10.1101/2024.07.21.604493

Close-up showing models refined with standard restraints (blue) and AQuaRef restraints (orange) 

superposed onto their higher-resolution homologous models (green) with their corresponding 

2mFo-DFc Fourier maps contoured at 2σ.



What is Next? AIMNet2 for Transition State Chemistry! 



High-Throughput Reaction Characterization with AIMNet2-RXN

hydration hydrogenation

Click chemistry Diels-Alder

Coming Soon!



AIMNet2-RXN Covers Diverse Mechanisms 

Triazole synthesis via click chemistry Reaction Mechanisms Explored (thus far)
• Diels-Alder
• Triazole formation (click chemistry)
• Combustion
• Tautomerization
• Hydrogen transfer
• Esterification
• Aldehyde and Ketone formation
• Metathesis
• Ring-closing and ring-opening
• Amine protection-deprotection
• …



AIMNet2-Pd is a tailored model for rapidly profiling 
multi-step mechanisms that define Pd-based Suzuki 
cross-coupling reactions.

  

  

 

   

   

    
 
  
  
 
 
  
 
 
  
 
  
 
 
 
  
 
 
  

   

   

   

AIMNet2-Pd: Reactive Model for Pd-catalyzed C-C cross-coupling



RMSE = 2.3

RMSE = 2.2

Pd-catalyzed C-C cross-coupling reaction: benchmarking energies of oxidative addition

Reference systems:
• PdL2 for mon-P ligands
• PdL for bi-P ligands and P-π 

ligands
• R1X



Radical Decomposition of Silylated Benzopinacol 

R = CH3

AIMNet2-NSE Single-Point Energy on 

DFT geometry evaluated with an 

ensemble average of 4 models

The average energy of geometries 

calculated with 4 AIMNet2-NSE 

models with standard deviation and 

comparison to DFT reference.



Use the ANI-1x/2x potential:

 PyTorch
 Available at: https://github.com/aiqm/torchani

Plugins: ASE, OpenMM, AMBER (dev), NAMD 
              Tinker-HP, LAMMPS, SCM-ADF

Use the AIMNet2:
Anstine D, Zubatyuk R, Isayev O. ChemRxiv 
Preprint. 2023; 
https://doi.org/10.26434/chemrxiv-2023-296ch

AIMNet implementation in Pytorch
Available at: https://github.com/isayevlab/aimnet2

Plugins:  ASE, LAMMPS, OpenMM

Used in Government labs, companies etc.

ANI-1x & 1ccx datasets:
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density 
functional theory properties for molecules. Sci Data 7, 134 
(2020). https://doi.org/10.1038/s41597-020-0473-z

Available at: https://github.com/aiqm/ANI1x_datasets

ANI-2x dataset & COMP6 benchmarks: 
https://zenodo.org/communities/aiqm

https://github.com/aiqm/ANI1x_datasets
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