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Pittsburgh
Supercomputing Center

enabling discovery since 1986

The Pittsburgh Supercomputing Center (PSC) provides advanced

research computing capability, education, and expertise to the national
research community.

Since 1986, PSC has provided university, government, and industry
researchers with access to some of the most powerful systems available

for high-performance computing, enabling discovery across all fields of
science.

OUR AREAS OF EXPERTISE

* high-performance and data-intensive computing

« data management technologies

» software architecture, implementation, and optimization

 enabling ground-breaking science, computer science, and engineering
« user support for all phases of research and education

« STEM outreach in data science, bioinformatics, and coding
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Bridges-2 Webinars

« Aforum for the Bridges-2 community to learn and share

ideas and achievements: Bridges-2 Webinar series | PSC

« Topics and speakers of interest to work that is being

done, or that may be done in future.

« Please suggest future speakers (including from your own

team) and/or topics (including your own)!

Just email: sergiu@psc.edu

© Pittsburgh Supercomputing Center, All Rights Reserved


https://www.psc.edu/events/bridges-2-webinar-series/

Introducing today’s presenter: Olexandr Isayev

Olexandr is a full-time professor in the Department of Chemistry at
Carnegie Mellon University. In 2008, Olexandr received his Ph.D. in
computational chemistry. He was a Postdoctoral Research Fellow
at Case Western Reserve University and a scientist at the
government research lab. Before CMU, he was a faculty member at
UNC Eshelman School of Pharmacy, the University of North
Carolina at Chapel Hill. Olexandr is a 2023 Scialog Fellow and
Associate Editor for the ACS Journal of Chemical Information and
Modeling. The research in his lab focuses on connecting artificial

intelligence (Al) with chemical sciences.

© Pittsburgh Supercomputing Center, All Rights Reserved



Q&A Logistics

« We abide by https://support.access-ci.org/code-of-conduct

« All of us except Olexandr will be muted during his presentation.
« Please type your questions into the Zoom chat.

«  We may be able to address some questions in the chat while

Olexandr is presenting.

«  When Olexandr finishes his presentation, he will answer

questions live during the final ~10 minutes of this webinar.

© Pittsburgh Supercomputing Center, All Rights Reserved
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Can you Imagine a
Chemist?
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Can a computer learn chemistry ?

How does it react with a

_ _ X base 7
Is it toxic ? 4\

Pharmacological

How are its spectra (IR, CH, properties ?
NMR, MS,...) ?




What’s it Good For?

Computational chemistry is a rapidly growing field in
chemistry.

» Computers are getting faster.

e Algorithms and programs are maturing.

Some of the almost limitless properties that can be calculated
with computational chemistry are:
* Design of novel molecules and materials
Medicinal chemistry, drug discovery
Vibrational frequencies, IR and Raman Spectra
NMR spectra
Electronic excitations and UV spectra
Reaction rates and catalyst design
Thermochemical and high accuracy reference data



Time Independent Schrédinger Equation

We’ll be solving the Time-Independent Schrodinger Equation
Hy = Ey

H: T‘l‘ V Your book writes this as: ]:[: E E

kinetic potential

For Many electron atoms/molecules:

=2yl ) Y A

a a>pf j oi>j l]
Nuclei Electron Nuclear- Nuclear- Electron-
kinetic kinetic Nuclear electron electron
energy energy repulsion attraction repulsion
— 2N /
v V
N VaN

K 4 o2 P 52 87
(% Wj where: V' = o + 5)/2 + 972



Motivation

Schrodinger Equation can only be solved exactly for
simple systemes.

* Rigid Rotor, Harmonic Oscillator, Particle in a Box, Hydrogen
Atom

For more complex systems (i.e. many electron
atoms/molecules) we need to make some simplifying
assumptions/approximations and solve it numerically.

However, it is still possible to get very accurate results
(and also get very crummy results).

* In general, the “cost” of the calculation increases with the
accuracy of the calculation and the size of the system.



The Born-Oppenheimer Approximation

* The wave-function of the many-electron molecule is a
function of electron and nuclear coordinates: y(R,r)
(R=nuclear coords, r=electron coords).

 The motions of the electrons and nuclei are coupled.

* However, the nuclei are much heavier than the electrons
* m,=2000 m,

* And consequently, nuclei move much more slowly than
do the electrons YE=1/2mv2). To the electrons the nuclei
appear fixed.

* Born-Oppenheimer Approximation: to a high degree of
accuracy we can separate electron and nuclear motion:

VR, r)= We(r;R) wi(R)




Molecular mechanics/Classical force field

The Electronic Schrodinger Equation (QM)

u(r)= X k(1 ~1) + X 4 (6,-6,0)

bonds angles

V
+ ) —-(1+cos(nw—))
torsions
\ N 12 3 6
0 o o, 4,
Y [48,,[(_") _(_,,) }_"’I]
i=1 j=i+l I\ Vi Fy

water
Continuum solvent model

Hydrophobic effect is roughly
proportional to surface area

torsion angle

Distance bond length or 3-atom angle

HY¥Y(r;R) = E,;¥(r; R)

Electronic Electronic
wave potential
function energy

A>B




Supervised Machine Learning Framework

TN

output  prediction Molecular
function features

* Training: given a training set of labeled examples {(x,,y,), -..,
(X\,Yn) 1 estimate the prediction function f by minimizing the
prediction error on the training set

» Testing: apply f to a never before seen test example x and output
the predicted value y = f(x)



Machine Learned Interatomic Potential (MLIP) Motivation

(Spoiler alert!)

E=f ( Rvector)

Highly accurate, but / Forward Pass Potential EnerQ

expensive and no V

- CCsSD(T
ML potentials 'é‘ _______ . (M

" .-~  DFT&HF
i . Accurate but not cheap
:

7 Semi-empirical QM
Vary in accuracy

and coverage

\Atomic Forces €«—— Backward Pass —/

Neural Network Interatomic Potential

' Not transferable

O(N’) O(N?) O(N°) O(N’)
Computational Scaling




Structure representation
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Viewed by
another molecule

naphtalen-1-amine
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Viewed by
computers



l1’ .
“‘1.' H Graphs are widely used to represent
C 4 i and differentiate chemical structures,

Mum T A A My, .
c TC ' where atoms are vertices and bonds
‘g é % are expressed as edges connecting these
@ vt o' W vertices.

Viewed by \ MOL File

Computers -I5I5- 11240515102D

1615 o 0 0 0 O 0O 0O 0993 VZ000

Oier  aistes  oloeo0c 0 0 o
Molecular graphs allow | i i faif i Vertices
the computation of | i&: =2 smsc ¢ @2 (atomic type,
numerous features to | & ax i i coordinateseto)
compare them | iz =i s oo
guantitatively. | 5516666
2220000 Edges
56 10000 ..
12 1055 ¢ (connectivity table,
210000 |abel-types of bonds)
Downstream ML tasks EEEEEE




Graph/point cloud-based models for molecules

A. Graph Convolutional Model

C. Weave Model
&
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___Extensibility test set

. ET'
ANl ArChIteCture /\ [OBSecondsonGPU

(St s ;;'L-,;i:’ ‘;z::._
FLYnryyuryyinryry
| ANI-1
29 299
33333 00999

.

;‘, Hzﬁ

element-specific

networks
Elocal\
—_—

6 20 40 60 80 100
Eper (kcal/mol)

DFT l l
52 ™ core hours

Local Atomic Environment:
Justin Smith Symmetry Functions

MLP)-
- Elocal/EtotaI
MLB-E

local

[Jinput [} atomic environment vectors [ multilayer perceptrons

The Force is Strong with This One!

Justin Smith, 0.1, and Adrian Roitberg. Chem. Sci. 8(4), 3192-3203, 2017.

e.g., use element-dependent
invariant symmetry functions



Molecular Representé

J. Smith, O. Isayey, A. Roitberg. Chem. Sci., 2017, 8, 3192-3203



Current Features of ANI software .ICIM o

* Currently available elements: CHNOSFCI

o 2 I
e

% * More advanced model architectures with 14 elements :
@)
< H(R)I‘P) EI‘P)
T * Two levels of theory: Kok
> * ®B97M/Def2-TZVPP and
« CCSD(T)*/CBS
https://github.com/aigm/torchani
* Geo opt, analytic hessian, MD: NVE, NVT, NPT etc
e * Thermochemistry in harmonic and quasi-harmonic approximations
@)
'-l(_-'; * Accurate conformational search in gas and continuum dielectric
@
a
2— * Full implementation of PBC, domain decomposition on multiple GPUs

* Stress tensor and cell optimization



Fast but Accurate Property Predictions with ML

Geometry & Potential Energy

Name

Cysteine-
Dipeptide

poT

Hexafluoroacetone

Bendamustine

Surface

MAE

Molecule

HN
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A =

2,18

0,58

0,92

1.16

RMSE

2.96

0.71

1.05
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Christian Devereux, Justin S. Smith, Kate K. Davis, Kipton Barros,
Roman Zubatyuk, Olexandr Isayev, and Adrian E. Roitberg. Extending
the Applicability of the ANI Deep Learning Molecular Potential to
Sulfur and Halogens. Journal of Chemical Theory and Computation
2020 16 (7), 4192-4202 DOI: 10.1021/acs.jctc.0c00121

Reaction Thermochemistry

Banchmark HC7 Banchmark I50L6

a -— o bETX b 2
40 | - AN

ANlAcex

cesomess B Crwwrtrwrvmy
-~ 30 _
2 3 -2
; E
g 20 &
¥ 34
w uf
! 1
w 10 w

- a7
0 nen - ..,.A..A - - AN
ANI-eex
CCSD(T)Cas
1 2 3 4 5 6 7
Reaction 1D nwmm
S i n 13
\ - | 4 . .

Smith, J.S., Nebgen, B.T., Zubatyuk, R. et al. Approaching
coupled cluster accuracy with a general-purpose neural
network potential through transfer learning. Nat Commun
10, 2903 (2019). https://doi.org/10.1038/s41467-019-
10827-4




Auto3D Package

SMILES

automatic task segmentation

“tautomer enumeration

/ ~ {
HN™ \_.o N T N\=0

N0H =0
{ ll

isomer enumeration
N H,~"| (o]

lfir { (s B

fr- o
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‘ enantiomer filter
N0 0 N~ o o
5 '15}5).)1..\__ RGN (’fi'fl) _'“__..—_/[j_\

|

Liu, Z.; Zubatiuk, T.; Roitberg,

coordiantes, bxn

-1.8246 -3.1687

-2.7161 -1.1704
-2.2208 -1.B958

[

SDF

duplicate filtering and ranking
structure reference overlay
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parallel geometry optimization
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x3 elements, bx

14622 (CCCNONH.,.

-1.6482 CCCCCDHH_
2.6022

charges, b
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parallel 3D building and geometry optimization
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¥ p- X FP oy « % gy
. . Ra Q- “
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building

, . ~ .
P

A.; Isayev, O. J. Chem. Info. Model. 2022, 62(22), 5373

Input: SMILES

Output: Optimized conformers
and energies

Isomer engine: RDKit/OMEGA

Optimizing engine: ANI-
2x/AIMNET/ANI-2xt

Key features:

*Accurate NNPs
*Highly parallel on GPUs

*Run as a Python Carnegle
library, CLI, yaml| Mellon
University



An example from scratch: Gibbs free energy
of tautomerization reactions

301 R%:0.95 - » 81 SMILES pairs
= i, MAE: 1.48 kcal/mol Fd » Obtain 3D structure with
- | o
T B Auto3D
~ 10 ./;.#‘: » Calculate Gibbs free
< P alk energies with ANI-2xt and
o) * % '
o | o . B973c, respectively.
—-10 27
_ AGT" = AEEL,. + AE(ZPE) + AE® — TAS
220 -0 0 10 20 30 Carnegie
AG(ANI-2xt, kcal/mol) Mellon
Liu, Z.; Zubatiuk, T.; Roitberg, A.; Isayev, O. J. Chem. Info. Model. 2022, 62(22), 5373 23



Current user base

» Academic labs

» Big pharmaceutical
companies

» Chemical Industry

» Drug discovery startups

» Installation: pip install Auto3D
» https://github.com/isayevlab/Auto3D pkg

Carnegie
Mellon
University |


https://github.com/isayevlab/Auto3D_pkg

Los Alamos national lab: materials simulations at scale with ANI

a) 1.3 million atoms at t=24.5ps

Constructed on the DOE LLNL Sierra supercomputer using *‘» PRy m’v"‘lW‘!V
V100 GPUs during its open science period v -’oa.‘ o= s

Active learning automatically samples all phases of interest

Human knowledge is not required, and may even be inferior
to fully automated data selection

-~ DFT  =x- ANLAI

Enabled large scale shock simulations of 1.3 million atoms on
80 NVIDIA GPUs

|Elevid)
b= ~N
o w
% I

FllewiA)
~N
w

|
e
)

Shock simulation can be compared back to EXFAS
experimental data for validation

|FilteviA)

[ElleviA)

|FilteviA)

0 5 10 15 20 3 4 5 6 1 8 9 10
Simulation Time (ps) Clister Radius (4)

JS Smith, B Nebgen, N Mathew, J Chen, N Lubbers, L Burakovsky, S Tretiak, HA . . .
Nam, T Germann, S Fensin, K Barros; Nature Communications (12) 1257 (2021) Slide courtesy of Justin Smith



https://www.nature.com/articles/s41467-021-21376-0

ANI-1xnr: Reactive ML Potential for CHNO Chemistry

nature chemistry

Article https://doi.org/10.1038/s41557-023-01427-3

Exploring thefrontiers of condensed-phase
chemistry withageneralreactive machine
learning potential

The ANI-1xnr model can be found at:
https://github.com/atomistic-ml/ani-1xnr/

Received: 13 April 2023 Shuhao Zhang'?, Matgorzata Z. Mako$ ® *#, Ryan B. Jadrich?®, Elfi Kraka®,
Kipton Barros?°, Benjamin T. Nebgen ®2, Sergei Tretiak ® 2%, Olexandr Isayev®"’,
Nicholas Lubbers®* -, Richard A. Messerly®? - & Justin S. Smith®?2#

Accepted: 12 December 2023

Published online: 07 March 2024

®|Check for updates Atomistic simulation has abroad range of applications from drug design
to materials discovery. Machine learning interatomic potentials (MLIPS)
have become an efficient alternative to computationally expensive ab
initio simulations. For this reason, chemistry and materials science
would greatly benefit from a general reactive MLIP, that is, an MLIP that
isapplicable toabroad range of reactive chemistry without the need for
refitting. Here we develop a general reactive MLIP (ANI-1xnr) through
automated sampling of condensed-phase reactions. ANI-1xnr is then
applied to study five distinct systems: carbon solid-phase nucleation,
graphene ring formation from acetylene, biofuel additives, combustion
of methane and the spontaneous formation of glycine from early earth



https://github.com/atomistic-ml/ani-1xnr/

A most recent progress of ANI potential (ANI-1xXNR) built by
active learning workflow & nanoreactor MD

Nanoreactor: ML-based simulations of extreme dynamics Applications

Carbon nucleation Graphene formation
System builder Dynamical sampler Emergent reactions

R ;.. 30k .
i | *» ?.’3 ; ¢ Temp. -4, &% Vol. sO® H P pore) e
A’ t":'.f"-v;.o ‘
i ._\“._ > “'\?.’, ‘.L ‘_,r‘ t' \’)O AN ’ jGo h - - -
k‘«' \‘\\ > Biofuel additives Methane combustion
- ‘ ) r { Q . '
Random molecular Time varying temperatures 5 oo > gQO J Vi —-é-__
concentrations and system volumes C < é '
oy , /“M : :
1 '2\\(\ T .
Active o S
Learning  ao® “\,c,wr Nanoreactor 4\
S
LOOp Miller experiment
Quantum Ensemble of
\ e A calculations ML potentials : |
> e <
® > )
Training Z é e
A|Y) = Ey|¥) > dataset -;j;\« (r)} )% : % L)

Zhang, Shuhao, et al. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).



Case Study 1: Carbon solid-p

Random Carbon Placement

e e
.
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.~

3.52 g/cc density
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AR faah,
-“‘o-'i O 4

Aol

Random Ca_rbon Placement

T &
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»—\—"\. —
e G ¥

|
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!

2.25 g/cc density

Random Carbon Placement

0.50 g/cc density

nase nucleation

Initial simulation set-up:
5000 carbon atoms
0.5-3.5 gm/cm?

2500 K

Carbon will form different solid-phase
products under different conditions

Test the model’s performance on carbon
solid-phase nucleation process to see if
the physics the model learned can also
work on physical process not shown in
the training set

Zhang, Shuhao, et al. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).



Case Study 1: Carbon solid-p

3.52 g/cc density

Random Carbon Placement

———

3

Diamond Cubic

1 e aas

2.25 g/cc density

0.50 g/cc density

Random Carbon Placement

-

———

:Iﬁ

—

X

—
e L

Zhang, Shuhao, et al

nase nucleation

ANI-1nr produces the expected bulk
structures at each density

ANI-1nr predicts reliable lattice
constants for diamond and graphite

Crystal Model a(Ad) b(A) c(A)
Diamond ANI-1xnr 358 358 3.58
ANI-2x 375 395 364
Exp. 357 357 3.57
Graphite ~ ANI-1xnr 247 247 [6.24]
ANI-2x 244 244 1100
Exp. 246 246 16.71

. "Exploring the frontiers of chemistry with a general reactive machine learning potential." (2024).



Case Study 3: Methane Combustion

200

175 A

150 -

125 -
100 -

~J
w

# of molecules

N
v O

o

0 20 40 60 80 100

Fragments track during the simulation

Species profiles consistent with
literature bespoke ML potential

Methane combustion (100 methane + 200 02)
with ANI-RXN reactive potential



2017: ANI

element-specific
networks

e -_-> _ Iocal/ Etotal
MEB-E
local
)

[J input [ atomic environment vectors [[Jmultilayer perceptrons







Different NN Architectures

ACCOUNTS

of chemical research

A

HO WD) = m% [w(t)) | Data-driven
methods

Ak

Computational Cost

Physics-aware
artificial intelligence

Accuracy and Transferability

ACSPublicatio.r:? -

7 A T, Mot (e, Mot B

Tetiana Zubatiuk and Olexandr Isayev. Accounts of Chemical Research 2021 54 (7), 1575-1585 DOI: 10.1021/acs.accounts.0c00868



The 2nd Generation Atoms-in-Molecules ML Potential

AlMNet2 is generalized potential with chemical space coverage of
common non-metal and halogen elements with ~hybrid DFT accuracy

20M wB97m/def2-TZVPP
Calculations

* Existing datasets

* Extraction from CSD

* Constrained Molecular Dyn.
* Normal Mode Sampling

* Active Learning

* Data Distillation

Total Energyamner (kcal/mol)

Neutraland Charged Species

400

200

—200

>

RMSD=2.57, MAD=1.76

’ R2=0.9979

-200 0 200 400
Total Energyper (kcal/mol)

zwitterionic bridged 5-membered
phosphorous-nitrogen rings

T

Arsenic pentafluorides bridged by a
negative fluorine

| L
72 L
‘-\/ : _\'\A /_ :

L Lo

Pre-trained Models and Calculators Available: htips://github.com/isayevlab/aimnet?2

Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch


https://github.com/isayevlab/aimnet2

2024: AIMNet2 _ message passes (1
f—\. : p=2...(N-1)

= m
- A local
(r,a)
V a
> (v.@) ) dis
V P
\ ] es
‘ total
——[+Ad
d HNQE

NQE P~g-
A A

" Jinput [l embedding & symmetry functions [_] atomic feature vectors
[Jmultilayer perceptron [ Jmessage passing output[_]neural charge equilibration

Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch



Parametric t-SNE projection of Atomic Feature Vectors

Differentiation by chemical environment
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NSE: Neutral Spin and Charge Equilibration

The development of neutral spin equilibration improves AIMNet to

cover neutral and charged molecules.
Zubatyuk et al. Nat. Comm. 12, 4870, 2021.

&

Anion c ¢ Cation During message passing, charge

. . normalization factors are predicted to
] NSE L\‘b{ : W redistribute charge across the system.
pre- ¢ “i.ﬁ )
- ’ f
3&:“1} *'%2’4 G =i+ 5 ( Z )
C
H “ 1 1 ;
L‘\ < bw _ |
é"( AlMNet-NSE achieves energy

accuracy of ~2 kcal mol? for neutral,
Spin anionic, and cationic molecules.
density




AIMNet-NSE

Conceptual DFT: reactivity indices D D @
. . 0
Chemical potential u = (—E) ~ —l(IP + EA) =T
oON/y 2 Embedding
1(0%E 1 - S
Molecular hardness n = S\avz) =~ E(IP — EA) Interaction [—>f 3
K . . 2 V :
Electrophilicity index w = #'/,, AIM
q,9
() \ A
Fukui index f(r) = ( P ) NSE
14
_ 1
fa =qc —an; fd =dav —qa; fd =5(c+qa) . "
6.5 i 6 9
Atomic philicity indexes wk = wfk :: 5 j
5.0 o 4 6 10!
45 9 5 ' Qg
4.0 4 e:f
35 2 o 3 ’
- ; il RMSD 0.0827, MAD=0.0605 o P74 RMSD 0.101, MAD 0.0704 i [RMSD=0.128, MAD=0.0693
25 R?=0.9761 =0.9548] 1 R?=0.9673 1
25 3.0 35 40 45 50 55 6.0 65 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9

DFT and AIMNet-NSE predictions for electronegativity (),
HOMO LUMO chemical hardness (n) and electrophilicity index (w)

Zubatyuk, Roman; Smith, Justin; Nebgen, Benjamin T.; Tretiak, Sergei; Isayev, Olexandr. Teaching a Neural Network to Attach and Detach Electrons from
Molecules. Nature Communications, 2021, 12, 4870. Preprint: https://doi.org/10.26434/chemrxiv.12725276.v2

Count



AlMNet2 computational performance

Batch optimization of conformer Protein energy & gradient evaluation
ensembles
10!
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Benchmarks performed on a single core of i7-9700K CPU and Nvidia Titan V GPU.
Reported total optimization time per molecule.

Number of atoms

Benchmarks performed on a Nvidia H100 (80GB VRAM)

AIMNet2 model was used with PyTorch based implementation of FIRE optimizer, LBFGS optimizer in ASE has overhead of 4-5% beyond forces evaluation with AIMNet?2.
which takes 1.5-2x more steps to converge compared to ANC optimizer in XTB.

Anstine D, Zubatyuk R, Isayev O. AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-
Organic Needs. ChemRxiv.; 2023; DOI: 10.26434/chemrxiv-2023-296ch



AlMNet2 Foundation Model: Enabling Diverse Application

AIMNet2-COSMO-SAC/ RS : Machine Learning / Molecular Mechanics
5 : Simulations

Anstine & Isayev, JACS, 2023



Refinement of protein crystal structure with ML

Optimization process of fitting structural parameters to experimental data
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Fit atomic model to experimental data as
good as possible while making sure the
model makes physical and chemical sense

QM computations
https://github.com/qrefine/

2y

R. Zubatyuk, et al. AQuaRef: Machine learning accelerated quantum refinement of protein structures.

BioRxiv 2024.07.21.604493; DOI: https://doi.org/10.1101/2024.07.21.604493



Default Phenix Refinement vs AQuaRef
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Close-up showing models refined with standard restraints (blue) and AQuaRef restraints (orange)
superposed onto their higher-resolution homologous models (green) with their corresponding
2mFo-DFc Fourier maps contoured at 20.

R. Zubatyuk, et al. AQuaRef: Machine learning accelerated quantum refinement of protein structures.
BioRxiv 2024.07.21.604493; DOI: https://doi.org/10.1101/2024.07.21.604493



What is Next? AIMNet2 for Transition State Chemistry!

Research Overview: develop Neural Network ‘"
Potentials that accelerate reaction pathway
searches and support robust transition state
conformational sampling

L& /_:/.

©
0)
(@]
® @ Reactant

® 's) \/ © Intermediates
@ Products
\_ _J

Zhao and Savoie, 2021, Nat. Comp. Sci.

=== s=ss minimum energy pathway (MEP)

A/B reactant/product

ﬁ? transition state



High-Throughput Reaction Characterization with AIMNet2-RXN

Transition State Approximation Transition State Optimization Intrinsic Reaction Coordinate

Nudged Elastic Band Method

. /@ é 0 (i.e., minimizing atomic and spring forces)
o ’ )
| ’ L)
Q ’ [
o ¢ '
. food e
@ l. '| .v:'..' ‘-\.
S—f © (€} o< \ d 7
O ® ~Q - J
Reaction Coordinate Reaction Coordinate Reaction Coordinate
Synthesis Planning
Stressor-Specific Deconstruction approximate time required per reaction with DFT:
Engineered Degradation hour(s)-severaldays

Biochemical Pathways

Batch Nudged Elastic Band (BNEB)

hydration hydrogenation

~350,000 Reactions per day w/ 1 RTX3090 GPU

Coming Soon!




Relative Energy (kcal/mol)

Triazole synthesis via click chemistry

AIMNet2-RXN Covers Diverse Mechanisms
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Reaction Mechanisms Explored (thus far)

* Diels-Alder

* Triazole formation (click chemistry)
 Combustion

* Tautomerization

* Hydrogen transfer

e Esterification

* Aldehyde and Ketone formation

* Metathesis

* Ring-closing and ring-opening
 Amine protection-deprotection
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AIMNet2-Pd: Reactive Model for Pd-catalyzed C-C cross-coupling

401

20 4

Relative Energy (kcal/mol)

AlMNet2-Pd is a tailored model for rapidly profiling P
multi-step mechanisms that define Pd-based Suzuki Hﬁmsg Center for Computer

cross-coupling reactions. Assisted Synthesis




Pd-catalyzed C-C cross-coupling reaction: benchmarking energies of oxidative addition

AlMNet2 energy [kcal/mol]
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Reference systems:

* PdL, for mon-P ligands

* PdL for bi-P ligands and P-mt
ligands
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E(kcal/mol)

Radical Decomposition of Silylated Benzopinacol
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Use the ANI-1x/2x potential: ANI-1x & 1ccx datasets:
The ANI-1ccx and ANI-1x data sets, coupled-cluster and density

PyTorch functional theory properties for molecules. Sci Data 7, 134
Available at: https://github.com/aigm/torchani (2020). https://doi.org/10.1038/s41597-020-0473-z

Plugins: ASE, OpenMM, AMBER (dev), NAMD Available at: https://github.com/aigm/ANI1x datasets
Tinker-HP, LAMMPS, SCM-ADF

ANI-2x dataset & COMP6 benchmarks:

Use the AIMNet?2: https://zenodo.org/communities/aigm
Anstine D, ZUbatVUk R, Isayev O. ChemRxiv Used in Government labs, companies etc.
Preprint. 2023;

https://doi.org/10.26434/chemrxiv-2023-296¢ch A .

NIH)

National Institutes

AIMNet implementation in Pytorch O -BASF of Health
Available at: https://github.com/isayevlab/aimnet2

Plugins: ASE, LAMMPS, OpenMM .'Idl]ﬂilﬂ @
Opentye
Genentech @ penclc

- Los Alamos F\ %
NATIONAL LABORATORY fFrrrerys |
EST.1943

BERKELEY LAB
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https://github.com/aiqm/ANI1x_datasets
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