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Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools.  The MLlib library 
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above 
implementations.

There are good example documents for the clustering routine we are using, as well as alternative 
clustering algorithms, here:

http://spark.apache.org/docs/latest/mllib-clustering.html

I suggest you use these pages for your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html


Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple 
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine 
learning objectives, sometimes as one part of a pipeline.
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Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points.  We want to figure out how many clusters there are, and their centers.  Let’s fire up 
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t. 
How hard can it be to count clusters? How many are here?

From 1900 until 1956 humans were 
considered to have 48 chromosomes, 
instead of 46, based upon the interpretation 
of this camera lucida image.



____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split() )
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])] )
>>>

Finding Clusters

Read into RDD

Transform to words and integers 

br06% interact
...
r288% 
r288% module load spark
r288% pyspark

Make sure you are in the directory with the data file. Otherwise, 
Spark is dangerously quiet when you textFile() a file that does not 
exist. It is "lazy" and you won't find out that you have missing 
data until a later error.



>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
['    664159    550946', '    665845    557965', '    597173    575538', '    618600    551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[['664159', '550946'], ['665845', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way



____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform 

Import Kmeans



Finding Clusters

What is the
exact answer?

There are helper algorithms (the 
python kneed package) or 
alternative metrics, such as the 
silhouette coefficient, that you 
might consider. None are 
definitive. Judgement and 
domain knowledge are critical.

Not our mystery data
from the below curve.



____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 1.6.0
      /_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
...     model = KMeans.train(rdd3, clusters)
...     print (clusters, model.computeCost(rdd3))
... 

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12



>>> for trials in range(10):
...    print
...    for clusters in range(12,18):
...        model = KMeans.train(rdd3,clusters)
...        print (clusters, model.computeCost(rdd3))

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12



>>> for trials in range(10):                          #Try ten times to find best result
...    for clusters in range(12, 16):                 #Only look in interesting range
...        model = KMeans.train(rdd3, clusters)
...        cost = model.computeCost(rdd3)
...        centers = model.clusterCenters             #Let’s grab cluster centers
...        if cost<1e+13:                             #If result is good, print it out
...           print (clusters, cost)
...           for coords in centers:
...             print (int(coords[0]), int(coords[1]))
...           break
... 

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521



Fit?
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16 Clusters
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We are closer to leading edge science than you might think.

The LIGO gravitational wave detector was able to confirm the collision of two neutron stars 
with both a gamma ray satellite and optical and other electromagnetic spectrum telescopes. 
For these transient events, it requires rapid real-time signal analysis to steer other 
instruments to the proper celestial coordinates. The 2 second gamma-ray burst was 
detected 1.7 seconds after the GW merger signal. 70 observatories were able to mine 
signatures in the following days. Even so, the refined location alert took a long time, and 
much improvement lies ahead.

This rapid processing requirement will only become more extreme as 

the Square Kilometer Array comes fully on-line. It will generate over 

an Exabyte of data a day. It will require extreme real-time 

processing to classify and compress this data down to an archivable 

size.

Strange, repeating radio signal near the 

center of the Milky Way has scientists 

stumped

This article (www.livescience.com/strange-

radio-source-milky-way-center) is the 

summary of the paper 

(arxiv.org/pdf/2109.00652.pdf) that looks an 

awful lot like what we are doing.

In April 2020, astronomers picked up some bursts 
of activity, in the X-ray band of the spectrum, a 
“run-of-the-mill” magnetar. But the team found 
that, shortly after the magnetar burst in the X-ray 
band, CHIME picked up two sharp staccato peaks 
in the radio band, within several milliseconds of 
each other, signaling a fast radio burst. The 
researchers were able to track the radio bursts to 
a point in the sky that was within a fraction of a 
degree of SGR 1935+2154 — the same magnetar 
that was blasting out X-rays around the same 
time. The team used calibration data from other 
astrophysical sources to estimate the magnetar’s 
brightness. They calculated that the magnetar, in 
the fraction of a second that the FRB flashed, was 
3,000 times brighter than any other magnetar 
radio signal that has yet been observed. 
Happening in our own galaxy, thousands of times 
brighter than any other pulse we’ve ever seen.



Dimensionality Reduction

We are going to find a recurring theme throughout machine learning:

• Our data naturally resides in higher dimensions

• Reducing the dimensionality makes the problem more tractable

• And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed 
representation.

As we return to this theme, we will highlight these slides with our Dimensionality
Reduction badge so that you can follow this thread and appreciate how fundamental
it is.



Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly 
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)

Children's Clothing $800

Pet Supplies $0

Cameras (Dash, Security, Baby) $450

Containers (Storage) $350

Romance Book $0

Remodeling Books $80

Sporting Goods $25

Children's Toys $378

Power Tools $0

Computers $0

Garden $0

Children's Books $180

... ...

<   2
9

0
0

 C
atego

ries   >

This is a 2900 dimensional vector.



Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable 
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less 
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are 
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the 
clusters at all. We can now represent any customer by their distance from these 80 clusters.

Customer Representation

Cluster Young 
Parents

College 
Athlete

Auto 
Enthusiast

Knitter Steelers Fan Shakespeare 
Reader

Sci-Fi Fan Plumber ...

Distance 0.02 2.3 1.4 8.4 2.2 14.9 3.3 0.8 ...

We have now accomplished two things:
• we have compressed our data 
• learned something about our customers (who to send a dashcam promo to).

80 dimensional vector.



Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will 
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of 
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances 
between randomly distributed points within differently 
dimensioned unit hypercubes. Notice how all the points start 
to be about the same distance apart.

One can imagine this makes life harder on a clustering 
algorithm!

There are other surprising effects: random vectors are 
almost all orthogonal; the unit sphere takes almost no 
volume in the unit square. These cause all kinds of problems 
when generalizing algorithms from our lowly 3D world.

Most common misuse of this term is to note that points 
are sparser in a high number of features. This is true, but 
not this effect.



Metrics

Even the definition of distance  (the metric) can vary based upon application. If you are solving chess problems, you might find the 
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is 
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c ).



Everybody's Favorite DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!



Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.



Principal Component Analysis

Principal Component Analysis plot for 354 Y-chromosome haplotypes from 
the public Ysearch database, identified as belonging to Y-DNA Haplogroup J 
and its subgroups. Data represent first and second most significant 
components calculated from 37 Y-STR markers. The different J1, J2 and J2b 
subhaplogroups are resolved clearly into different clusters. Additional 
structure can be revealed by calculating further PCAs for each of the 
subgroup memberships separately. The labels J1 C37 and J2 C37 identify 
haplotypes often associated with Cohen lineages.View down the 1st Princ. 
Comp. This is a Wikipedia example of a PCA use case.

Very often, PCA users get fixated on the Analysis 
part of PCA, and get confused at to the very basic 
information that PCA actually extracts from the 
data, the Principal Components.

While we are often inputting large and complex 
data-sets, and the visible end result is usually a 
2D graph (because we all like a nice 2D graph), 
this is really just one application of the more 
fundamental principle components.
 



Principal Components

But, don't let yourself get distracted by all the dots! The knowledge 
of the algorithm is completely described by a set of vectors of the 
same dimensionality as the input data. If you have 6D data, you get 
back 6 6D vectors. The data is 3D in the case at left.

Those vectors have a magnitude proportional to the explained 
variance. That is useful guidance as to how much you can reduce the 
dimensionality.

If you tell the algorithm to project the data down to some lower 
dimension (2D or 3D typically, if not always meaningfully), those 
vectors give us the linear transform we use to do so.



What can't the components tell you?

If you have very "uncentered" data, your first principle component is likely to correspond to the mean of the data. So, you probably want to 
center your data first.

Similarly, if you have very different scales for your axis, it will be difficult to get meaningful results. So, you may want to rescale. However, be 
aware that your results are now scaled!

And, if your axis have different units (say temperature and mass), you need to be very thoughtful. Switching from Fahrenheit to Celsius would 
give different results!



What can't the components tell you?

And ask yourself what you expect PCA to do with it's limited output of vectors. If you have a split, or very non-linear distribution, 
how do you expect it to respond? It there isn't a good answer, then you need to reconsider your approach. Or at least have 
some suspicion of your results.

Everything casts shadows! Those shadows can be very deceiving.

?



From the fun channel of Hideki Tsuiki



Shadow Showtime!



Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available 
factors. We may have an entry (vector) for each home that captures this kind of data:

Home Data

Latitude 4833438 north

Longitude 630084 east

Last Sale Price $ 480,000

Last Sale Year 1998

Width 62

Depth 40

Floors 3

Bedrooms 3

Bathrooms 2

Garage 2

Yard Width 84

Yard Depth 60

... ...

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...



Principal Component Analysis Fail

1st Component Off
Data Not Very Linear

D x W Is Not Linear
But (DxW) Fits Well

Non-Linear PCA?
A Better Approach Tomorrow!



Why the fascination with linear techniques?

The Streetlight Effect

This is a very real and powerful force
throughout the sciences.

It is not because practitioners are dumb.

But, it is also very often neither explained
nor justified.

Which leads to great confusion.



Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images



Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold
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Images from Wikipedia



import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
    plt.figure()
    plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
    plt.xticks([]); plt.yticks([])
    plt.title(title)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.) )

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn
Sparse



How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

  Data

Character Recognition

CAPTCHA

Chess

Go

Character Recognition ('90s)

CAPTCHA (2023)

Chess (1997)

Go (2017)

DL
Angsty Poetry

Paintings of
Monkeys Piloting Jets

CUDA (2007)



The
Journey
Ahead
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