Syndicate: Software-defined Wide-area Storage

Jude Nelson Princeton University

Background

- CCI*DIBBS NSF #1541318
- Princeton University + University of Arizona
 OpenCloud + Cul/oreg (iDlopt)
 - OpenCloud + CyVerse (iPlant)
- Next-generation storage system
 - Coming online this year
 - Seeking community input and advise

Outline

- Problem Formulation
- What is Syndicate?
- Sample Applications
- UI/UX
- Status

The Good: Lots of Data Sources!

Legacy Data Stores

Legacy Data Stores

The Bad: Lots of Data Flows

The Ugly: Storage Reintegration

Each workflow implements a built-in bespoke storage system!

Prior Work

- iRODS
 - Intra-site programmable storage
- Parrot Virtual FS
 - Driver layer for legacy services
- CernVM FS
 - Wide-area
 - End-to-end guarantees
 - Read-only

Syndicate: Programmable Storage

Why Syndicate?

- Spans multiple sites and services
 - End-to-end authenticity
 - End-to-end correctness
 - No central points of trust
- Minimizes operational costs
 - Isolates, composes reusable storage logic
 - Reprogrammable fabric \rightarrow Immutable workflows
 - Self-managing (SDN-like)

Syndicate Programming Model

Dataset

Workflow

Cloud

Storage

- Storage Programs
 - UNIX-y data plane
 - I/O flow: typed byte stream
 - Composition: 1-to-1, 1-to-N, N-to-1
- Gateways
 - A storage program's "process"
 - Stable workflow interface
- Syndicate
 - The "shell" for gateways

Syndicate Usage

- Volume
 - Tagged filesystem abstraction
 - Set of cooperating gateways
 - Workflow-specific data-plane behavior
- Users
 - Own, control, and run gateways
 - Volume owner: controls admission

Real-world Volume (1)

Real-world Volume (2)

Spanning Multiple Networks

- Global control plane
 - Membership; configuration; I/O pipeline construction
 - Metadata Service (MS) in Google AppEngine
- Blockstack (USENIX ATC 2016)
 - Public LDAP-like DB
 - Control plane trust anchor
 - All nodes independently construct the same DB
 - DB journal embedded in a PoW blockchain
 - No central points of trust!

User Experience

- 1) PI makes user accounts
- 2) Users make volumes
- 3) Volume owners make and assign gateways
- 4) Users point client at volume owners
 - Client looks up volume owners in Blockstack
 - Client discovers accessible volumes
 - Client configures and runs gateways

Operator Experience

- 1) Bake Syndicate into VM images
- 2) Run site-local Blockstack server
- 3) Run Syndicate MS in Google AppEngine 4)
- MS is untrusted 5)
 - Helps gateway discovery
- 6) 7) (optional) Run gateways on users' behalf

System Status

- Driver support
 - Amazon S3, Google Drive, Box.net, Dropbox, ...
 - GenBank, M-Lab, iRODS, local disk, ...
 - FUSE, Node.js, HDFS, shell programs, ...
- Blockstack in production since 2015
 - https://github.com/blockstack
- Syndicate is alpha
 - Usable, with quirks
 - https://github.com/syndicate-storage

Thank you!

Questions?